ML/DL Notes
  • Home
  • Advacned Notebooks
    • Optional Lab: Model Evaluation and Selection
    • Optional Lab: Diagnosing Bias and Variance
    • Practice Lab: Neural Networks for Handwritten Digit Recognition, Binary
    • Optional Lab - Neurons and Layers
    • Optional Lab - Simple Neural Network
    • Optional Lab - Simple Neural Network
    • Practice Lab: Neural Networks for Handwritten Digit Recognition, Multiclass
    • Optional Lab: Back propagation using a computation graph
    • Optional Lab - Derivatives
    • Optional Lab - Multi-class Classification
    • Optional Lab - ReLU activation
    • Optional Lab - Softmax Function
    • Practice Lab: Advice for Applying Machine Learning
    • Practice Lab: Decision Trees
    • Ungraded Lab: Decision Trees
    • Ungraded Lab - Trees Ensemble
  • Advanced Learning Algorithms
    • Advanced
  • Reinforcement learning notebooks
    • Deep Q-Learning - Lunar Lander
    • State Action Value Function Example
    • Utils
  • Supervised Legacy
    • Classic_Supervised
  • Supervised Notebooks
    • Optional Lab: Cost Function
    • Optional Lab: Gradient Descent for Linear Regression
    • Optional Lab: Python, NumPy and Vectorization
    • Optional Lab: Multiple Variable Linear Regression
    • Optional Lab: Feature scaling and Learning Rate (Multi-variable)
    • Optional Lab: Feature Engineering and Polynomial Regression
    • Optional Lab: Linear Regression using Scikit-Learn
    • Practice Lab: Linear Regression
    • Optional Lab: Classification
    • Optional Lab: Logistic Regression
    • Optional Lab: Logistic Regression, Decision Boundary
    • Optional Lab: Logistic Regression, Logistic Loss
    • Optional Lab: Cost Function for Logistic Regression
    • Optional Lab: Gradient Descent for Logistic Regression
    • Ungraded Lab: Logistic Regression using Scikit-Learn
    • Ungraded Lab: Overfitting
    • Optional Lab - Regularized Cost and Gradient
    • Logistic Regression
  • Udacity
    • Changing K Solution
    • DBSCAN Lab
    • Feature Scaling Solution
    • 2. KMeans vs GMM on The Iris Dataset
    • Selecting the optimal number of clusters using Silhouette Scoring on KMeans and GMM clustering - SOLUTION
    • Implementing the Gradient Descent Algorithm
    • Hierarchical Clustering Lab
    • Independent Component Analysis Lab
    • Interpret PCA Results Solution
    • Mini Batch Gradient Descent
    • Multiple Linear Regression
    • PCA 1 Solution
    • PCA Mini Project Solution
    • Random Projection Solution
    • Predicting Student Admissions with Neural Networks
    • Perceptron algorithm
  • Unsupervised,Recommenders,Reinforcement Learning
    • Unsupervised
  • Unsupervised notebooks
    • K-means Clustering
    • Practice lab: Collaborative Filtering Recommender Systems
    • PCA - An example on Exploratory Data Analysis
    • Practice lab: Deep Learning for Content-Based Filtering
  • Previous
  • Next
  • Ungraded Lab: Logistic Regression using Scikit-Learn
    • Goals
    • Dataset
    • Fit the model
    • Make Predictions
    • Calculate accuracy

Ungraded Lab: Logistic Regression using Scikit-Learn¶

Goals¶

In this lab you will:

  • Train a logistic regression model using scikit-learn.

Dataset¶

Let's start with the same dataset as before.

In [1]:
Copied!
import numpy as np

X = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])
y = np.array([0, 0, 0, 1, 1, 1])
import numpy as np X = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]]) y = np.array([0, 0, 0, 1, 1, 1])

Fit the model¶

The code below imports the logistic regression model from scikit-learn. You can fit this model on the training data by calling fit function.

In [2]:
Copied!
from sklearn.linear_model import LogisticRegression

lr_model = LogisticRegression()
lr_model.fit(X, y)
from sklearn.linear_model import LogisticRegression lr_model = LogisticRegression() lr_model.fit(X, y)
Out[2]:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_iter=100,
                   multi_class='auto', n_jobs=None, penalty='l2',
                   random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
                   warm_start=False)

Make Predictions¶

You can see the predictions made by this model by calling the predict function.

In [3]:
Copied!
y_pred = lr_model.predict(X)

print("Prediction on training set:", y_pred)
y_pred = lr_model.predict(X) print("Prediction on training set:", y_pred)
Prediction on training set: [0 0 0 1 1 1]

Calculate accuracy¶

You can calculate this accuracy of this model by calling the score function.

In [4]:
Copied!
print("Accuracy on training set:", lr_model.score(X, y))
print("Accuracy on training set:", lr_model.score(X, y))
Accuracy on training set: 1.0
In [ ]:
Copied!

In [ ]:
Copied!


Documentation built with MkDocs.

Keyboard Shortcuts

Keys Action
? Open this help
n Next page
p Previous page
s Search